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A powerful tool that is widely available in spreadsheets
provides a simple means of fitting experimental data to non-
linear functions. The procedure is so easy to use and its
mode of operation is so obvious that it is an excellent way
for students to learn the underlying principle of least-
squares curve fitting. The purpose of this article is to intro-
duce the method of Walsh and Diamond (1) to readers of
this Journal, to extend their treatment to weighted least
squares, and to add a simple method for estimating uncer-
tainties in the least-square parameters. Other recipes for
curve fitting have been presented in numerous previous
papers (2–16).

Consider the problem of fitting the experimental gas
chromatography data (17) in Figure 1 with the van Deemter
equation:

y = Ax + B/x + C (1)

where y is plate height (mm), x is flow rate (mL/min), and
A, B, and C are constants to be found by the method of least
squares. This paper is restricted to the situation in which the
uncertainty in y is much greater than the uncertainty in x.

We treat cases in which (i) all values of y have equal
uncertainty or (ii) different values of y have different un-
certainty. In case i, each datum is given equal weight for
curve fitting. This procedure is the default (unweighted)
method used when uncertainties in y are not known. Case
ii is a weighted least squares treatment, because more cer-
tain points are given more weight than less certain points.

Unweighted Least Squares

Experimental values of x and y from Figure 1 are listed
in the first two columns of the spreadsheet in Figure 2. The
vertical deviation of the ith point from the smooth curve is

vertical deviation = yi (observed) – yi (calculated)
= yi – (Axi + B/xi + C) (2)

The least squares criterion is to find values of A, B, and
C in eq 1 that minimize the sum of the squares of the verti-
cal deviations of the points from the curve:

   n   sum = yi – Axi + B / xi + C
2

Σ
i = 1

(3)

where n is the total number of points (= 13 in Fig. 1).
Here are the steps to find the best values of A, B, and

C that minimize the sum in eq 3:

1. List the measured values of x and y in columns 1 and
2 of Figure 2.

2. Temporarily assign the value 1 to A, B, and C at the
right side of the spreadsheet in cells F2, F3, and F4.
(The labels in column E are for readability. They have
no other function.)

3. In column C, calculate y from the measured value of x
(eq 1). For example, in cell C2, y is computed from the
value of x in cell A2 and the values of A, B, and C in
cells F2, F3, and F4.

Nonlinear Least-Squares Curve Fitting
with Microsoft Excel Solver

Daniel C. Harris
Chemistry & Materials Branch, Research & Technology Division, Naval Air Warfare Center,China Lake, CA  93555

Computer Bulletin Board
edited by

Steven D. Gammon
University of Idaho

Moscow, ID  83844

Figure 1. Plate height versus flow rate in a gas chromatography
experiment. Circles are experimental data (17 ) and the solid line
is the best fit to eq 1 by the method of least squares in Figures 2–4.

Figure 2. Initial spreadsheet for finding the best values of A, B,
and C in eq 1. Numbers in columns A and B are experimental
data. Numbers in column F are initial guesses for A, B, and C.
The sum in cell D16 is the one to be minimized in eq 3.
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4. In column D, compute the vertical deviation in eq 2
and then square the deviation. For example, D2 = (B2
– C2)^2.

5. In cell D16, compute the sum of the squares of vertical
deviations in column D. The sum in cell D16 is the
sum in eq 3.

6. The least squares criterion is to find values of A, B, and
C that minimize the sum in cell D16. Microsoft Excel
provides a tool called Solver that handles this prob-
lem in a manner that is transparent to the user. Solver
is invoked in different manners by different versions
of the software. In version 5, Solver is found under the
Tools menu. After invoking Solver, the screen in Fig-
ure 3 appears. If cell D16 was highlighted prior to call-
ing Solver, then “$D$16” automatically appears in the
upper left dialog box that says “Set Cell”. If some other
cell was highlighted, enter D16 in the Set Cell box. The
dollar signs are optional. Because we wish to minimize
the value in cell D16, click “Min” on the second line
beside “Equal to”. Finally, write “F2,F3,F4” in the dia-
log box labeled “By Changing Cells”. Now click the
“Solve” button at the upper right and you have just
asked the software to set the value of cell D16 to a
minimum by changing values in cells F2, F3, and F4.

7. When Solver finishes its task in a few seconds, the
spreadsheet will appear as in Figure 4. Solver has ad-
justed the values in cells F2, F3, and F4 to minimize
the sum in cell D16. The values of A, B, and C in cells
F2, F3, and F4 were used to plot the curve in Figure 1.1

8. Try some different initial values for A, B, and C (other
than 1) to see if Solver finds the same solution. A
given problem may have many local minima. We are
seeking the best set of A, B, and C to find the lowest
minimum sum in cell D16.

Weighted Least Squares

If different values of y have different uncertainties, it
makes sense to force the least-squares curve to be closer to
the more certain points than to the less certain points. That
is, we assign a greater weight to the more certain points. If
the uncertainty (standard deviation) in the measured value
of yi is si, then the weight assigned to point i is

weight = wi = 1/si
2 (4)

In Figure 5, measured uncertainties in y are listed in
column C under the heading “error(y)”. Weights computed
with eq 4 appear in column D. Columns E and F are calcu-
lated with eqs 1 and 2, just as they were in Figure 2. Col-
umn G contains weighted square residuals, obtained by
multiplying the square residuals in column F times the
weights in column D. Cell G16 contains the sum of weighted
residuals. Solver is then invoked to vary the values of A, B,
and C (in cells G20, G21, and G22) to minimize the sum of
weighted residuals in cell G16. The final values of A, B, and

Figure 4. Appearance of spreadsheet from Figure 2 after Solver
has finished its operation.

Figure 3. Solver screen with user input.

C are somewhat different from the final values in the
unweighted procedure in Figure 4.

Estimating Uncertainties in the Least-Squares
Parameters

Uncertainties in A, B, and C are as important as the
values of the parameters themselves. Small uncertainties
mean that the model (eq 1) fits the experimental data well.
Large uncertainties mean that there is considerable error
in the measured points (x,y) or that the model is inappro-
priate.

Figure 6 shows how to estimate uncertainties in A, B,
and C of Figure 4 by the “jackknife” procedure (18, 19). Here
are the steps:

1. Delete the first row of data in Figure 4 (cells A2, B2,
C2, and D2) and then use Solver to find the least-
squares parameters A, B, and C. For this purpose, the
initial values of A, B, and C in cells F2–F4 should be
those found by Solver in the previous run. Copy and
paste the values of A, B, and C into the first row of
Figure 6. Restore the first row of Figure 4 and delete
the second row to generate a second solution. Paste
this solution into the next line of Figure 6. Repeat this
process a total of n times and paste each result into
Figure 6. It is not necessary to actually delete data
from the spreadsheet. You can write the sum in cell
D16 of Figure 4 in the form D16 = D2 + D3 + D4 + D5
+ D6 + D7 + D8 + D9 + D10 + D11 + D12 + D13 +
D14. Delete one term in the sum each time to gener-
ate the 13 lines of Figure 6. It took approximately 10
minutes of work to generate the data for Figure 6.

2. For each column in Figure 6, compute the standard
deviation with the function STDEV.

3. Find the standard error for each parameter (A, B, and
C) by multiplying its standard deviation times (n–1)/√n,
where n is the number of data points (= 13 in Fig. 6).
Standard errors are estimates of uncertainty in the
least-squares parameters. The final result for Figures
4 and 6 is therefore2

Param-     Raw result   Rounded result
  eter
    A   0.024358 ±  0.001471    0.0244 ±  0.0015
    B 26.727837 ±  2.179233  26.7 ±  2.2
    C   1.568088 ±  0.157212    1.57 ±  0.16
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Figure 5. Spreadsheet for weighted least-squares calculation.

Figure 6. Estimating uncertainties in least-squares parameters of
Figure 4 by the jackknife procedure (18, 19 ).

The same process can be carried out for the weighted
least squares procedure in Figure 5 by deleting one data
point at a time to generate 13 “jackknifed” data sets for in-
put to Figure 6.
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Notes

1. The smooth curve in Figure 1 was obtained from the val-
ues of A, B, and C generated by Solver in Figure 4. In a fresh
column of a spreadsheet, values of x  from 3 to 120 were en-
tered. For each x, a value of y was calculated in the next col-
umn from the equation y = Ax + B/x + C. A graphing program
was then used to plot the calculated points and to draw a smooth
curve between the points. Discrete experimental values of x and
y listed in columns A and B of Figure 2 were superimposed on
the same graph.

2. We retain an extra, nonsignificant digit for A, B, and C to
reduce future roundoff errors if these parameters are used in sub-
sequent computations. In the spreadsheets, the number of deci-
mal places chosen for display was selected arbitrarily for read-
ability. The spreadsheet retains more precision than the number
of digits displayed.
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